A parameter optimization algorithm for intensity‐modulated radiotherapy prostate treatment planning*

نویسندگان

  • J. Barbiere
  • M. F. Chan
  • J. Mechalakos
  • D. Cann
  • K. Schupak
  • C. Burman
چکیده

An iterative algorithm has been developed to analytically determine patient specific input parameters for intensity-modulated radiotherapy prostate treatment planning. The algorithm starts with a generic set of inverse planning parameters that include dose and volume constraints for the target and surrounding critical structures. The overlap region between the target volume and the rectum is used to determine the optimized target volume coverage goal. Sequential iterations are performed to vary the numerous parameters individually or in sets while other parameters remain fixed. A coarse grid search is first used to avoid convergence on a local maximum. Linear interpolation is then used to define a region for a fine grid search. Selected parameters are also tested for possible improvements in target coverage. In several representative test cases investigated the coverage of the planning target volume improved with the use of the algorithm while still meeting the clinical acceptability criteria for critical structures. The algorithm avoids time-consuming random trial and error variations that are often associated with difficult cases and also eliminates lengthy user learning curves. The methodology described in this paper can be applied to any treatment planning system that requires the user to select the input optimization parameters.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3-Dimensional conformal radiotherapy versus intensity modulated radiotherapy for localized prostate cancer: Dosimetric and radiobiologic analysis

 Background: To analyze the dosimetric and radio biologic advantages between intensity modulated radiotherapy (IMRT) and 3 dimensional conformal radiotherapy (3DCRT) and selection of optimal photon energy for IMRT treatments. Material and methods: 24 patients with localized prostate carcinoma were planned for 3DCRT and IMRT techniques. Radiation dose of 54 Gy with 2 Gy/fraction, was planned to ...

متن کامل

Monte Carlo Simulation of Prostate Intensity Modulated Radiotherapy Using PRIMO Software: A Feasibility Study

Introduction: Nowadays Intensity Modulated Radiotherapy (IMRT) is a common method for treating prostate cancers. Must of the Monte Carlo software cannot simulate the IMRT procedures due to inability of these soft wares to simulate the multi leaf collimator (MLC) positions or movements. A new user-friendly software based on the PENELOPE Monte Carlo code named PRIMO was published...

متن کامل

Iterative Approach for Automatic Beam Angle Selection in Intensity Modulated Radiation Therapy Planning

Introduction: Beam-angle optimization (BAO) is a computationally intensive problem for a number of reasons. First, the search space of the solutions is huge, requiring enumeration of all possible beam orientation combinations. For example, when choosing 4 angles out of 36 candidate beam angles, C36 = 58905 possible combinations exist.  Second, any change in a   beam 4 config...

متن کامل

Assessment and Comparison of Homogeneity and Conformity Indexes in Step-and-Shoot, Compensator-Based Intensity Modulated Radiation Therapy (IMRT) and Three-Dimensional Conformal Radiation Therapy (3D CRT) in Prostate Cancer

Introduction: Intensity modulated radiation therapy (IMRT) and three-dimensional conformal radiation therapy (3D CRT) are two treatment modalities in prostate cancer, which provide acceptable dose distribution in tumor region with sparing the surrounding normal tissues. IMRT is based on inverse planning optimization; in which, intensity of beams is modified by using multileaf c...

متن کامل

Reduced-order parameter optimization for simplifying prostate IMRT planning.

Intensity-modulated radiotherapy (IMRT) has become an effective tool for cancer treatment with radiation. However, even expert radiation planners still need to spend a substantial amount of time manually adjusting IMRT optimization parameters such as dose limits and costlet weights in order to obtain a clinically acceptable plan. In this paper, we describe two main advances that simplify the pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2002